Cylindrical multipole moments

Cylindrical multipole moments are the coefficients in a series expansion of a potential that varies logarithmically with the distance to a source, i.e., as . Such potentials arise in the electric potential of long line charges, and the analogous sources for the magnetic potential and gravitational potential.

For clarity, we illustrate the expansion for a single line charge, then generalize to an arbitrary distribution of line charges. Through this article, the primed coordinates such as  refer to the position of the line charge(s), whereas the unprimed coordinates such as  refer to the point at which the potential is being observed. We use cylindrical coordinates throughout, e.g., an arbitrary vector  has coordinates  where  is the radius from the  axis,  is the azimuthal angle and  is the normal Cartesian coordinate. By assumption, the line charges are infinitely long and aligned with the  axis.

Cylindrical multipole moments of a line chargeEdit

Figure 1: Definitions for cylindrical multipoles; looking down the z^{{\prime }} axis

The electric potential of a line charge \lambda  located at {\displaystyle (\rho ^{\prime },\theta ^{\prime })} is given by

{\displaystyle \Phi (\rho ,\theta )={\frac {-\lambda }{2\pi \epsilon }}\ln R={\frac {-\lambda }{4\pi \epsilon }}\ln \left|\rho ^{2}+\left(\rho ^{\prime }\right)^{2}-2\rho \rho ^{\prime }\cos(\theta -\theta ^{\prime })\right|}

where R is the shortest distance between the line charge and the observation point.

By symmetry, the electric potential of an infinite linecharge has no z-dependence. The line charge \lambda  is the charge per unit length in the z-direction, and has units of (charge/length). If the radius \rho  of the observation point is greater than the radius {\displaystyle \rho ^{\prime }} of the line charge, we may factor out {\displaystyle \rho ^{2}}

{\displaystyle \Phi (\rho ,\theta )={\frac {-\lambda }{4\pi \epsilon }}\left\{2\ln \rho +\ln \left(1-{\frac {\rho ^{\prime }}{\rho }}e^{i\left(\theta -\theta ^{\prime }\right)}\right)\left(1-{\frac {\rho ^{\prime }}{\rho }}e^{-i\left(\theta -\theta ^{\prime }\right)}\right)\right\}}

and expand the logarithms in powers of {\displaystyle (\rho ^{\prime }/\rho )<1}

{\displaystyle \Phi (\rho ,\theta )={\frac {-\lambda }{2\pi \epsilon }}\left\{\ln \rho -\sum _{k=1}^{\infty }\left({\frac {1}{k}}\right)\left({\frac {\rho ^{\prime }}{\rho }}\right)^{k}\left[\cos k\theta \cos k\theta ^{\prime }+\sin k\theta \sin k\theta ^{\prime }\right]\right\}}

which may be written as

{\displaystyle \Phi (\rho ,\theta )={\frac {-Q}{2\pi \epsilon }}\ln \rho +\left({\frac {1}{2\pi \epsilon }}\right)\sum _{k=1}^{\infty }{\frac {C_{k}\cos k\theta +S_{k}\sin k\theta }{\rho ^{k}}}}

where the multipole moments are defined as
{\displaystyle Q=\lambda ,}
{\displaystyle C_{k}={\frac {\lambda }{k}}\left(\rho ^{\prime }\right)^{k}\cos k\theta ^{\prime },}
and
{\displaystyle S_{k}={\frac {\lambda }{k}}\left(\rho ^{\prime }\right)^{k}\sin k\theta ^{\prime }.}

Conversely, if the radius \rho  of the observation point is less than the radius {\displaystyle \rho ^{\prime }} of the line charge, we may factor out {\displaystyle \left(\rho ^{\prime }\right)^{2}} and expand the logarithms in powers of {\displaystyle (\rho /\rho ^{\prime })<1}

{\displaystyle \Phi (\rho ,\theta )={\frac {-\lambda }{2\pi \epsilon }}\left\{\ln \rho ^{\prime }-\sum _{k=1}^{\infty }\left({\frac {1}{k}}\right)\left({\frac {\rho }{\rho ^{\prime }}}\right)^{k}\left[\cos k\theta \cos k\theta ^{\prime }+\sin k\theta \sin k\theta ^{\prime }\right]\right\}}

which may be written as

{\displaystyle \Phi (\rho ,\theta )={\frac {-Q}{2\pi \epsilon }}\ln \rho ^{\prime }+\left({\frac {1}{2\pi \epsilon }}\right)\sum _{k=1}^{\infty }\rho ^{k}\left[I_{k}\cos k\theta +J_{k}\sin k\theta \right]}

where the interior multipole moments are defined as
{\displaystyle Q=\lambda ,}
{\displaystyle I_{k}={\frac {\lambda }{k}}{\frac {\cos k\theta ^{\prime }}{\left(\rho ^{\prime }\right)^{k}}},}
and
{\displaystyle J_{k}={\frac {\lambda }{k}}{\frac {\sin k\theta ^{\prime }}{\left(\rho ^{\prime }\right)^{k}}}.}

General cylindrical multipole momentsEdit

The generalization to an arbitrary distribution of line charges {\displaystyle \lambda (\rho ^{\prime },\theta ^{\prime })} is straightforward. The functional form is the same

{\displaystyle \Phi (\mathbf {r} )={\frac {-Q}{2\pi \epsilon }}\ln \rho +\left({\frac {1}{2\pi \epsilon }}\right)\sum _{k=1}^{\infty }{\frac {C_{k}\cos k\theta +S_{k}\sin k\theta }{\rho ^{k}}}}

and the moments can be written

{\displaystyle Q=\int d\theta ^{\prime }\int \rho ^{\prime }d\rho ^{\prime }\lambda (\rho ^{\prime },\theta ^{\prime })}
{\displaystyle C_{k}=\left({\frac {1}{k}}\right)\int d\theta ^{\prime }\int d\rho ^{\prime }\left(\rho ^{\prime }\right)^{k+1}\lambda (\rho ^{\prime },\theta ^{\prime })\cos k\theta ^{\prime }}
{\displaystyle S_{k}=\left({\frac {1}{k}}\right)\int d\theta ^{\prime }\int d\rho ^{\prime }\left(\rho ^{\prime }\right)^{k+1}\lambda (\rho ^{\prime },\theta ^{\prime })\sin k\theta ^{\prime }}

Note that the {\displaystyle \lambda (\rho ^{\prime },\theta ^{\prime })} represents the line charge per unit area in the {\displaystyle (\rho -\theta )} plane.

Interior cylindrical multipole momentsEdit

Similarly, the interior cylindrical multipole expansion has the functional form

{\displaystyle \Phi (\rho ,\theta )={\frac {-Q}{2\pi \epsilon }}\ln \rho ^{\prime }+\left({\frac {1}{2\pi \epsilon }}\right)\sum _{k=1}^{\infty }\rho ^{k}\left[I_{k}\cos k\theta +J_{k}\sin k\theta \right]}

where the moments are defined

{\displaystyle Q=\int d\theta ^{\prime }\int \rho ^{\prime }d\rho ^{\prime }\lambda (\rho ^{\prime },\theta ^{\prime })}
{\displaystyle I_{k}=\left({\frac {1}{k}}\right)\int d\theta ^{\prime }\int d\rho ^{\prime }\left[{\frac {\cos k\theta ^{\prime }}{\left(\rho ^{\prime }\right)^{k-1}}}\right]\lambda (\rho ^{\prime },\theta ^{\prime })}
{\displaystyle J_{k}=\left({\frac {1}{k}}\right)\int d\theta ^{\prime }\int d\rho ^{\prime }\left[{\frac {\sin k\theta ^{\prime }}{\left(\rho ^{\prime }\right)^{k-1}}}\right]\lambda (\rho ^{\prime },\theta ^{\prime })}

Interaction energies of cylindrical multipolesEdit

A simple formula for the interaction energy of cylindrical multipoles (charge density 1) with a second charge density can be derived. Let {\displaystyle f(\mathbf {r} ^{\prime })} be the second charge density, and define {\displaystyle \lambda (\rho ,\theta )} as its integral over z

{\displaystyle \lambda (\rho ,\theta )=\int dz\ f(\rho ,\theta ,z)}

The electrostatic energy is given by the integral of the charge multiplied by the potential due to the cylindrical multipoles

{\displaystyle U=\int d\theta \int \rho d\rho \ \lambda (\rho ,\theta )\Phi (\rho ,\theta )}

If the cylindrical multipoles are exterior, this equation becomes

{\displaystyle U={\frac {-Q_{1}}{2\pi \epsilon }}\int \rho d\rho \ \lambda (\rho ,\theta )\ln \rho }
{\displaystyle \ \ \ \ \ \ \ \ \ \ +\ \left({\frac {1}{2\pi \epsilon }}\right)\sum _{k=1}^{\infty }C_{1k}\int d\theta \int d\rho \left[{\frac {\cos k\theta }{\rho ^{k-1}}}\right]\lambda (\rho ,\theta )}
{\displaystyle \ \ \ \ \ \ \ \ +\ \left({\frac {1}{2\pi \epsilon }}\right)\sum _{k=1}^{\infty }S_{1k}\int d\theta \int d\rho \left[{\frac {\sin k\theta }{\rho ^{k-1}}}\right]\lambda (\rho ,\theta )}

where Q_{{1}}{\displaystyle C_{1k}} and {\displaystyle S_{1k}} are the cylindrical multipole moments of charge distribution 1. This energy formula can be reduced to a remarkably simple form

{\displaystyle U={\frac {-Q_{1}}{2\pi \epsilon }}\int \rho d\rho \ \lambda (\rho ,\theta )\ln \rho +\left({\frac {1}{2\pi \epsilon }}\right)\sum _{k=1}^{\infty }k\left(C_{1k}I_{2k}+S_{1k}J_{2k}\right)}

where {\displaystyle I_{2k}} and {\displaystyle J_{2k}} are the interior cylindrical multipoles of the second charge density.

The analogous formula holds if charge density 1 is composed of interior cylindrical multipoles

{\displaystyle U={\frac {-Q_{1}\ln \rho ^{\prime }}{2\pi \epsilon }}\int \rho d\rho \ \lambda (\rho ,\theta )+\left({\frac {1}{2\pi \epsilon }}\right)\sum _{k=1}^{\infty }k\left(C_{2k}I_{1k}+S_{2k}J_{1k}\right)}

where {\displaystyle I_{1k}} and {\displaystyle J_{1k}} are the interior cylindrical multipole moments of charge distribution 1, and {\displaystyle C_{2k}} and {\displaystyle S_{2k}} are the exterior cylindrical multipoles of the second charge density.

As an example, these formulae could be used to determine the interaction energy of a small protein in the electrostatic field of a double-stranded DNA molecule; the latter is relatively straight and bears a constant linear charge density due to the phosphate groups of its backbone. 


This article uses material from the Wikipedia article
 Metasyntactic variable, which is released under the 
Creative Commons
Attribution-ShareAlike 3.0 Unported License
.