List of electromagnetism equations

This article summarizes equations in the theory of electromagnetism.

DefinitionsEdit

Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field.

Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by qm(Wb) = μ0 qm(Am).

Initial quantitiesEdit

Quantity (common name/s)(Common) symbol/sSI unitsDimension
Electric chargeqeqQC = As[I][T]
Monopole strength, magnetic chargeqmgpWb or Am[L]2[M][T]−2 [I]−1 (Wb)

[I][L] (Am)

Electric quantitiesEdit

Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal d is the dipole moment between two point charges, the volume density of these is the polarization density PPosition vector r is a point to calculate the electric fieldr′ is a point in the charged object.

Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues.

Electric transport

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Linear, surface, volumetric charge densityλe for Linear, σe for surface, ρe for volume. q_e = \int \lambda_e \mathrm{d}\ell

 q_e = \iint \sigma_e \mathrm{d} S

 q_e = \iiint \rho_e \mathrm{d}V

C mnn = 1, 2, 3[I][T][L]n
CapacitanceCC = \mathrm{d}q/\mathrm{d}V\,\!

V = voltage, not volume.

F = C V−1[I]2[T]4[L]−2[M]−1
Electric currentI I = \mathrm{d}q/\mathrm{d}t \,\!A[I]
Electric current densityJI = \mathbf{J} \cdot \mathrm{d} \mathbf{S}A m−2[I][L]−2
Displacement current densityJd \mathbf{J}_\mathrm{d} = \epsilon_0 \left ( \partial \mathbf{E} / \partial t \right ) = \partial \mathbf{D} / \partial t \,\!A m−2[I][L]−2
Convection current densityJc \mathbf{J}_\mathrm{c} = \rho \mathbf{v} \,\!A m−2[I][L]−2

Electric fields

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Electric field, field strength, flux density, potential gradientE\mathbf{E} =\mathbf{F}/q\,\!N C−1 = V m−1[M][L][T]−3[I]−1
Electric fluxΦE\Phi_E = \int_S \mathbf{E} \cdot \mathrm{d} \mathbf{A}\,\!N m2 C−1[M][L]3[T]−3[I]−1
Absolute permittivity;ε \epsilon = \epsilon_r \epsilon_0\,\!F m−1[I]2 [T]4 [M]−1 [L]−3
Electric dipole momentp{\displaystyle \mathbf {p} =q\mathbf {a} \,\!}

a = charge separation directed from -ve to +ve charge

C m[I][T][L]
Electric Polarization, polarization densityP\mathbf{P} = \mathrm{d} \langle \mathbf{p} \rangle /\mathrm{d} V \,\!C m−2[I][T][L]−2
Electric displacement fieldD \mathbf{D} = \epsilon\mathbf{E} = \epsilon_0 \mathbf{E} + \mathbf{P}\,C m−2[I][T][L]−2
Electric displacement fluxΦD\Phi_D = \int_S \mathbf{D} \cdot \mathrm{d} \mathbf{A}\,\!C[I][T]
Absolute electric potential, EM scalar potential relative to point  r_0 \,\!

Theoretical:  r_0 = \infty \,\!
Practical:  r_0 = R_\mathrm{earth} \,\! (Earth's radius)

φ ,V V = -\frac{W_{\infty r }}{q} = -\frac{1}{q}\int_\infty^r \mathbf{F} \cdot \mathrm{d} \mathbf{r} = -\int_{r_1}^{r_2} \mathbf{E} \cdot \mathrm{d} \mathbf{r}\,\!V = J C−1[M] [L]2 [T]−3 [I]−1
Voltage, Electric potential differenceΔφV\Delta V = -\frac{\Delta W}{q} = -\frac{1}{q}\int_{r_1}^{r_2} \mathbf{F} \cdot \mathrm{d} \mathbf{r} = -\int_{r_1}^{r_2} \mathbf{E} \cdot \mathrm{d} \mathbf{r} \,\!V = J C−1[M] [L]2 [T]−3 [I]−1

Magnetic quantitiesEdit

Magnetic transport

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Linear, surface, volumetric pole densityλm for Linear, σm for surface, ρm for volume. q_m = \int \lambda_m \mathrm{d}\ell

 q_m = \iint \sigma_m \mathrm{d} S

 q_m = \iiint \rho_m \mathrm{d}V

Wb mn

A m(−n + 1),
n = 1, 2, 3

[L]2[M][T]−2 [I]−1 (Wb)

[I][L] (Am)

Monopole currentIm I_m = \mathrm{d}q_m/\mathrm{d}t \,\!Wb s−1

A m s−1

[L]2[M][T]−3 [I]−1 (Wb)

[I][L][T]−1 (Am)

Monopole current densityJm I = \iint \mathbf{J}_\mathrm{m} \cdot \mathrm{d} \mathbf{A} Wb s−1 m−2

A m−1 s−1

[M][T]−3 [I]−1 (Wb)

[I][L]−1[T]−1 (Am)

Magnetic fields

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Magnetic field, field strength, flux density, induction fieldB\mathbf{F} =q_e \left ( \mathbf{v}\times\mathbf{B} \right ) \,\!T = N A−1 m−1 = Wb m−2[M][T]−2[I]−1
Magnetic potential, EM vector potentialA \mathbf{B} = \nabla \times \mathbf{A} T m = N A−1 = Wb m3[M][L][T]−2[I]−1
Magnetic fluxΦB\Phi_B = \int_S \mathbf{B} \cdot \mathrm{d} \mathbf{A}\,\!Wb = T m2[L]2[M][T]−2[I]−1
Magnetic permeability\mu \,\!\mu \ = \mu_r \,\mu_0 \,\!V·s·A−1·m−1 = N·A−2 = T·m·A−1 = Wb·A−1·m−1[M][L][T]−2[I]−2
Magnetic momentmagnetic dipole momentmμBΠ

Two definitions are possible:

using pole strengths,
\mathbf{m} = q_m \mathbf{a}\,\!

using currents:
\mathbf{m} = NIA\mathbf{\hat{n}}\,\!

a = pole separation

N is the number of turns of conductor

A m2[I][L]2
MagnetizationM\mathbf{M} = \mathrm{d} \langle \mathbf{m} \rangle /\mathrm{d} V \,\!A m−1[I] [L]−1
Magnetic field intensity, (AKA field strength)HTwo definitions are possible:

most common:
\mathbf{B} = \mu \mathbf{H} = \mu_0 \left ( \mathbf{H} + \mathbf{M} \right ) \,

using pole strengths,[1]
\mathbf{H} = \mathbf{F} / q_m \,

A m−1[I] [L]−1
Intensity of magnetization, magnetic polarizationIJ\mathbf{I} = \mu \mathbf{M} \,\!T = N A−1 m−1 = Wb m−2[M][T]−2[I]−1
Self InductanceLTwo equivalent definitions are possible:

L=N\left ( \mathrm{d} \Phi/\mathrm{d} I \right )\,\!

L\left ( \mathrm{d} I/\mathrm{d} t \right )=-NV\,\!

H = Wb A−1[L]2 [M] [T]−2 [I]−2
Mutual inductanceMAgain two equivalent definitions are possible:

M_1=N\left ( \mathrm{d} \Phi_2/\mathrm{d} I_1 \right )\,\!

M\left ( \mathrm{d} I_2/\mathrm{d} t \right )=-NV_1\,\!

1,2 subscripts refer to two conductors/inductors mutually inducing voltage/ linking magnetic flux through each other. They can be interchanged for the required conductor/inductor;

M_2=N\left ( \mathrm{d} \Phi_1/\mathrm{d} I_2 \right )\,\!
M\left ( \mathrm{d} I_1/\mathrm{d} t \right )=-NV_2\,\!

H = Wb A−1[L]2 [M] [T]−2 [I]−2
Gyromagnetic ratio (for charged particles in a magnetic field)γ\omega = \gamma B \,\!Hz T−1[M]−1[T][I]

Electric circuitsEdit

DC circuits, general definitions

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Terminal Voltage for

Power Supply

VterV = J C−1[M] [L]2 [T]−3 [I]−1
Load Voltage for CircuitVloadV = J C−1[M] [L]2 [T]−3 [I]−1
Internal resistance of power supplyRint R_\mathrm{int} = V_\mathrm{ter}/I \,\!Ω = V A−1 = J s C−2[M][L]2 [T]−3 [I]−2
Load resistance of circuitRext R_\mathrm{ext} = V_\mathrm{load}/I \,\!Ω = V A−1 = J s C−2[M][L]2 [T]−3 [I]−2
Electromotive force (emf), voltage across entire circuit including power supply, external components and conductorsE\mathcal{E} = V_\mathrm{ter} + V_\mathrm{load} \,\!V = J C−1[M] [L]2 [T]−3 [I]−1

AC circuits

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Resistive load voltageVR V_R = I_R R \,\!V = J C−1[M] [L]2 [T]−3 [I]−1
Capacitive load voltageVC V_C = I_C X_C\,\!V = J C−1[M] [L]2 [T]−3 [I]−1
Inductive load voltageVLV_L = I_L X_L\,\!V = J C−1[M] [L]2 [T]−3 [I]−1
Capacitive reactanceXCX_C = \frac{1}{\omega_\mathrm{d} C} \,\!Ω−1 m−1[I]2 [T]3 [M]−2 [L]−2
Inductive reactanceXL X_L = \omega_d L \,\!Ω−1 m−1[I]2 [T]3 [M]−2 [L]−2
AC electrical impedanceZV = I Z\,\!

Z = \sqrt{R^2 + \left ( X_L - X_C \right )^2 } \,\!

Ω−1 m−1[I]2 [T]3 [M]−2 [L]−2
Phase constantδ, φ\tan\phi= \frac{X_L - X_C}{R}\,\!dimensionlessdimensionless
AC peak currentI0I_0 = I_\mathrm{rms} \sqrt{2}\,\!A[I]
AC root mean square currentIrms I_\mathrm{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} \left [ I \left ( t \right ) \right ]^2 \mathrm{d} t}  \,\!A[I]
AC peak voltageV0 V_0 = V_\mathrm{rms} \sqrt{2} \,\!V = J C−1[M] [L]2 [T]−3 [I]−1
AC root mean square voltageVrms V_\mathrm{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} \left [ V \left ( t \right ) \right ]^2 \mathrm{d} t}  \,\!V = J C−1[M] [L]2 [T]−3 [I]−1
AC emf, root mean square\mathcal{E}_\mathrm{rms}, \sqrt{\langle \mathcal{E} \rangle} \,\!\mathcal{E}_\mathrm{rms}=\mathcal{E}_\mathrm{m}/\sqrt{2}\,\!V = J C−1[M] [L]2 [T]−3 [I]−1
AC average power \langle P \rangle \,\! \langle P \rangle =\mathcal{E}I_\mathrm{rms}\cos\phi\,\!W = J s−1[M] [L]2 [T]−3
Capacitive time constantτC\tau_C = RC\,\!s[T]
Inductive time constantτL\tau_L = L/R\,\!s[T]

Magnetic circuitsEdit

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Magnetomotive force, mmfF\mathcal{F}, \mathcal{M} \mathcal{M} = NI

N = number of turns of conductor

A[I]

ElectromagnetismEdit

Electric fieldsEdit

General Classical Equations

Physical situationEquations
Electric potential gradient and field \mathbf{E} = - \nabla V

 \Delta V = -\int_{r_1}^{r_2} \mathbf{E} \cdot d\mathbf{r}\,\!

Point charge \mathbf{E} = \frac{q}{4 \pi \epsilon_0 \left | \mathbf{r} \right |^2 }\mathbf{\hat{r}} \,\!
At a point in a local array of point charges\mathbf{E} = \sum \mathbf{E}_i = \frac{1}{4 \pi \epsilon_0} \sum_i \frac{q_i}{\left | \mathbf{r}_i - \mathbf{r} \right |^2}\mathbf{\hat{r}}_i \,\!
At a point due to a continuum of charge \mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_V \frac{\mathbf{r} \rho \mathrm{d}V}{\left | \mathbf{r} \right |^3} \,\!
Electrostatic torque and potential energy due to non-uniform fields and dipole moments \boldsymbol{\tau} = \int_V \mathrm{d} \mathbf{p} \times \mathbf{E}

 U = \int_V  \mathrm{d} \mathbf{p} \cdot \mathbf{E}

Magnetic fields and momentsEdit

General classical equations

Physical situationEquations
Magnetic potential, EM vector potential \mathbf{B} = \nabla \times \mathbf{A}
Due to a magnetic moment \mathbf{A} = \frac{\mu_0}{4\pi}\frac{\mathbf{m}\times\mathbf{r}}{\left | \mathbf{r} \right |^3}

\mathbf{B}({\mathbf{r}})=\nabla\times{\mathbf{A}}=\frac{\mu_{0}}{4\pi}\left(\frac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{\left | \mathbf{r} \right |^{5}}-\frac{{\mathbf{m}}}{\left | \mathbf{r} \right |^{3}}\right)

Magnetic moment due to a current distribution \mathbf{m} = \frac{1}{2}\int_V \mathbf{r}\times\mathbf{J} \mathrm{d} V
Magnetostatic torque and potential energy due to non-uniform fields and dipole moments \boldsymbol{\tau} = \int_V \mathrm{d} \mathbf{m} \times \mathbf{B}

 U = \int_V \mathrm{d} \mathbf{m} \cdot \mathbf{B}

Electric circuits and electronicsEdit

Below N = number of conductors or circuit components. Subcript net refers to the equivalent and resultant property value.

Physical situationNomenclatureSeriesParallel
Resistors and conductors
  • Ri = resistance of resistor or conductor i
  • Gi = conductance of resistor or conductor i
R_\mathrm{net} = \sum_{i=1}^{N} R_i\,\!

{1 \over G_{{\mathrm  {net}}}}=\sum _{{i=1}}^{{N}}{1 \over G_{i}}\,\!

{1 \over R_{{\mathrm  {net}}}}=\sum _{{i=1}}^{{N}}{1 \over R_{i}}\,\!

G_{{\mathrm  {net}}}=\sum _{{i=1}}^{{N}}G_{i}\,\!

Charge, capacitors, currents
  • Ci = capacitance of capacitor i
  • qi = charge of charge carrier i
q_\mathrm{net} = \sum_{i=1}^N q_i \,\!

{1 \over C_{{\mathrm  {net}}}}=\sum _{{i=1}}^{N}{1 \over C_{i}}\,\! I_{{\mathrm  {net}}}=I_{i}\,\!

q_\mathrm{net} = \sum_{i=1}^N q_i \,\!

C_\mathrm{net} = \sum_{i=1}^N C_i \,\! I_\mathrm{net} = \sum_{i=1}^N I_i \,\!

Inductors
  • Li = self-inductance of inductor i
  • Lij = self-inductance element ij of L matrix
  • Mij = mutual inductance between inductors i and j
L_{{\mathrm  {net}}}=\sum _{{i=1}}^{N}L_{i}\,\!{1 \over L_{{\mathrm  {net}}}}=\sum _{{i=1}}^{N}{1 \over L_{i}}\,\!

V_i = \sum_{j=1}^N L_{ij} \frac{\mathrm{d}I_j}{\mathrm{d}t} \,\!

CircuitDC Circuit equationsAC Circuit equations
Series circuit equations
RC circuitsCircuit equation

R \frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{C} = \mathcal{E}\,\!

Capacitor charge  q = C\mathcal{E}\left ( 1 - e^{-t/RC} \right )\,\!

Capacitor discharge  q = C\mathcal{E}e^{-t/RC}\,\!

RL circuitsCircuit equation

L\frac{\mathrm{d}I}{\mathrm{d}t}+RI=\mathcal{E}\,\!

Inductor current rise I = \frac{\mathcal{E}}{R}\left ( 1-e^{-Rt/L}\right )\,\!

Inductor current fall I=\frac{\mathcal{E}}{R}e^{-t/\tau_L}=I_0e^{-Rt/L}\,\!

LC circuitsCircuit equation

L\frac{\mathrm{d}^2q}{\mathrm{d}t^2} + q/C = \mathcal{E}\,\!

Circuit equation

L\frac{\mathrm{d}^2q}{\mathrm{d}t^2} + q/C = \mathcal{E} \sin\left(\omega_0 t + \phi \right) \,\!

Circuit resonant frequency \omega_\mathrm{res} = 1/\sqrt{LC}\,\!

Circuit charge  

Circuit current  

Circuit electrical potential energy U_E=q^2/2C=Q^2\cos^2(\omega t + \phi)/2C\,\!

Circuit magnetic potential energy U_B=Q^2\sin^2(\omega t + \phi)/2C\,\!

RLC CircuitsCircuit equation

L\frac{\mathrm{d}^2q}{\mathrm{d}t^2} + R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{C} = \mathcal{E} \,\!

Circuit equation

 L\frac{\mathrm{d}^2q}{\mathrm{d}t^2} + R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{C} = \mathcal{E} \sin\left(\omega_0 t + \phi \right) \,\!

Circuit charge

q = q_0 eT^{-Rt/2L}\cos(\omega't+\phi)\,\!


This article uses material from the Wikipedia article
 Metasyntactic variable, which is released under the 
Creative Commons
Attribution-ShareAlike 3.0 Unported License
.