Lorentz–Heaviside units

Lorentz–Heaviside units (or Heaviside–Lorentz units) constitute a system of units (particularly electromagnetic units) within CGS, named for Hendrik Antoon Lorentz and Oliver Heaviside. They share with CGS-Gaussian units the property that the electric constant ε0 and magnetic constant µ0 do not appear, having been incorporated implicitly into the electromagnetic quantities by the way they are defined. Lorentz–Heaviside units may be regarded as normalizing ε0 = 1 and µ0 = 1, while at the same time revising Maxwell's equations to use the speed of light c instead.

Lorentz–Heaviside units, like SI units but unlike Gaussian units, are rationalized, meaning that there are no factors of 4π appearing explicitly in Maxwell's equations. That these units are rationalized partly explains their appeal in quantum field theory: the Lagrangian underlying the theory does not have any factors of 4π in these units. Consequently, Lorentz–Heaviside units differ by factors of 4π in the definitions of the electric and magnetic fields and of electric charge. They are often used in relativistic calculations,[note 1] and are used in particle physics. They are particularly convenient when performing calculations in spatial dimensions greater than three such as in string theory.

Length–mass–time frameworkEdit

As in the Gaussian units, the Heaviside–Lorentz units (HLU in this article) use the length–mass–time dimensions. This means that all of the electric and magnetic units are expressible in terms of the base units of length, time and mass.

Coulomb's equation, used to define charge in these systems, is F = qG
1
qG
2
/r2 in the Gaussian system, and F = qLH
1
qLH
2
/4πr2 in the HLU. The unit of charge then connects to 1 dyn⋅cm2 = 1 esu2 = 4π hlu. The HLU quantity qLH describing a charge is then 4π larger than the corresponding Gaussian quantity (see below), and the rest follows.

When dimensional analysis for SI units is used, including ε0 and μ0 are used to convert units, the result gives the conversion to and from the Heaviside–Lorentz units. For example, charge is ε0L3MT−2. When one puts ε0 = 8.854 pF/mL = 0.01 mM = 0.001 kg, and T = 1 second, this evaluates as 9.409669×10−11 C. This is the size of the HLU unit of charge.

Maxwell's equations with sourcesEdit

With Lorentz–Heaviside units, Maxwell's equations in free space with sources take the following form:

{\displaystyle \nabla \cdot \mathbf {E} ^{\textsf {LH}}=\rho ^{\textsf {LH}}}
{\displaystyle \nabla \cdot \mathbf {B} ^{\textsf {LH}}=0}
{\displaystyle \nabla \times \mathbf {E} ^{\textsf {LH}}=-{\frac {1}{c}}{\frac {\partial \mathbf {B^{\textsf {LH}}} }{\partial t}}}
{\displaystyle \nabla \times \mathbf {B} ^{\textsf {LH}}={\frac {1}{c}}{\frac {\partial \mathbf {E} ^{\textsf {LH}}}{\partial t}}+{\frac {1}{c}}\mathbf {J} ^{\textsf {LH}}}

where c is the speed of light in vacuum. Here ELH = DLH is the electric fieldHLH = BLH is the magnetic fieldρLH is charge density, and JLH is current density.

The Lorentz force equation is:

{\displaystyle \mathbf {F} =q^{\textsf {LH}}\left(\mathbf {E} ^{\textsf {LH}}+{\frac {\mathbf {v} }{c}}\times \mathbf {B} ^{\textsf {LH}}\right)\,}

here qLH is the charge of a test particle with vector velocity v and F is the combined electric and magnetic force acting on that test particle.

In both the Gaussian and Heaviside–Lorentz systems, the electrical and magnetic units are derived from the mechanical systems. Charge is defined through Coulomb's equation, with ε = 1. In the Gaussian system, Coulomb's equation is F = qG
1
qG
2
/r2. In the Lorentz–Heaviside system, F = qLH
1
qLH
2
/4πr2. From this, one sees that qG
1
qG
2
 = qLH
1
qLH
2
/4π, that the Gaussian charge quantities are smaller than the corresponding Lorentz–Heaviside quantities by a factor of 4π. Other quantities are related as follows.

{\displaystyle q^{\textsf {LH}}\ =\ {\sqrt {4\pi }}\ q^{\textsf {G}}}
{\displaystyle \mathbf {E} ^{\textsf {LH}}\ =\ {\mathbf {E} ^{\textsf {G}} \over {\sqrt {4\pi }}}}
{\displaystyle \mathbf {B} ^{\textsf {LH}}\ =\ {\mathbf {B} ^{\textsf {G}} \over {\sqrt {4\pi }}}}.

List of equations and comparison with other systems of unitsEdit

This section has a list of the basic formulae of electromagnetism, given in Lorentz–Heaviside, Gaussian and SI units. Most symbol names are not given; for complete explanations and definitions, please click to the appropriate dedicated article for each equation.

Maxwell's equationsEdit

Here are Maxwell's equations, both in macroscopic and microscopic forms. Only the "differential form" of the equations is given, not the "integral form"; to get the integral forms apply the divergence theorem or the Kelvin–Stokes theorem.

NameSI quantitiesLorentz–Heaviside quantitiesGaussian quantities
Gauss's law
(macroscopic)
{\displaystyle \nabla \cdot \mathbf {D} ^{\textsf {SI}}=\rho _{\text{f}}^{\textsf {SI}}}{\displaystyle \nabla \cdot \mathbf {D} ^{\textsf {LH}}=\rho _{\text{f}}^{\textsf {LH}}} 
Gauss's law
(microscopic)
{\displaystyle \nabla \cdot \mathbf {E} ^{\textsf {SI}}=\rho ^{\textsf {SI}}/\epsilon _{0}}{\displaystyle \nabla \cdot \mathbf {E} ^{\textsf {LH}}=\rho ^{\textsf {LH}}} 
Gauss's law for magnetism:{\displaystyle \nabla \cdot \mathbf {B} ^{\textsf {SI}}=0}{\displaystyle \nabla \cdot \mathbf {B} ^{\textsf {LH}}=0} 
Maxwell–Faraday equation
(Faraday's law of induction):
{\displaystyle \nabla \times \mathbf {E} ^{\textsf {SI}}=-{\frac {\partial \mathbf {B} ^{\textsf {SI}}}{\partial t}}}{\displaystyle \nabla \times \mathbf {E} ^{\textsf {LH}}=-{\frac {1}{c}}{\frac {\partial \mathbf {B} ^{\textsf {LH}}}{\partial t}}} 
Ampère–Maxwell equation
(macroscopic):
{\displaystyle \nabla \times \mathbf {H} ^{\textsf {SI}}=\mathbf {J} _{\text{f}}^{\textsf {SI}}+{\frac {\partial \mathbf {D} ^{\textsf {SI}}}{\partial t}}}{\displaystyle \nabla \times \mathbf {H} ^{\textsf {LH}}={\frac {1}{c}}\mathbf {J} _{\text{f}}^{\textsf {LH}}+{\frac {1}{c}}{\frac {\partial \mathbf {D} ^{\textsf {LH}}}{\partial t}}} 
Ampère–Maxwell equation
(microscopic):
{\displaystyle \nabla \times \mathbf {B} ^{\textsf {SI}}=\mu _{0}\mathbf {J} ^{\textsf {SI}}+{\frac {1}{c^{2}}}{\frac {\partial \mathbf {E} ^{\textsf {SI}}}{\partial t}}}{\displaystyle \nabla \times \mathbf {B} ^{\textsf {LH}}={\frac {1}{c}}\mathbf {J} ^{\textsf {LH}}+{\frac {1}{c}}{\frac {\partial \mathbf {E} ^{\textsf {LH}}}{\partial t}}} 

Other basic lawsEdit

NameSI quantitiesLorentz–Heaviside quantitiesGaussian quantities
Lorentz force{\displaystyle \mathbf {F} =q^{\textsf {SI}}\left(\mathbf {E} ^{\textsf {SI}}+\mathbf {v} \times \mathbf {B} ^{\textsf {SI}}\right)}{\displaystyle \mathbf {F} =q^{\textsf {LH}}\left(\mathbf {E} ^{\textsf {LH}}+{\frac {1}{c}}\mathbf {v} \times \mathbf {B} ^{\textsf {LH}}\right)} 
Coulomb's law{\displaystyle \mathbf {F} ={\frac {1}{4\pi \epsilon _{0}}}{\frac {q_{1}^{\textsf {SI}}q_{2}^{\textsf {SI}}}{r^{2}}}\mathbf {\hat {r}} }
{\displaystyle \mathbf {F} ={\frac {1}{4\pi }}{\frac {q_{1}^{\textsf {LH}}q_{2}^{\textsf {LH}}}{r^{2}}}\mathbf {\hat {r}} } 
Electric field of
stationary point charge
{\displaystyle \mathbf {E} ^{\textsf {SI}}={\frac {1}{4\pi \epsilon _{0}}}{\frac {q^{\textsf {SI}}}{r^{2}}}\mathbf {\hat {r}} }{\displaystyle \mathbf {E} ^{\textsf {LH}}={\frac {1}{4\pi }}{\frac {q^{\textsf {LH}}}{r^{2}}}\mathbf {\hat {r}} } 
Biot–Savart law{\displaystyle \mathbf {B} ^{\textsf {SI}}={\frac {\mu _{0}}{4\pi }}\oint {\frac {I^{\textsf {SI}}d\mathbf {l} \times \mathbf {\hat {r}} }{r^{2}}}}{\displaystyle \mathbf {B} ^{\textsf {LH}}={\frac {1}{4\pi c}}\oint {\frac {I^{\textsf {LH}}d\mathbf {l} \times \mathbf {\hat {r}} }{r^{2}}}} 

Dielectric and magnetic materialsEdit

Below are the expressions for the various fields in a dielectric medium. It is assumed here for simplicity that the medium is homogeneous, linear, isotropic, and nondispersive, so that the permittivity is a simple constant.

SI quantitiesLorentz–Heaviside quantitiesGaussian quantities
{\displaystyle \mathbf {D} ^{\textsf {SI}}=\epsilon _{0}\mathbf {E} ^{\textsf {SI}}+\mathbf {P} ^{\textsf {SI}}}{\displaystyle \mathbf {D} ^{\textsf {LH}}=\mathbf {E} ^{\textsf {LH}}+\mathbf {P} ^{\textsf {LH}}}{\displaystyle \mathbf {D} ^{\textsf {G}}=\mathbf {E} ^{\textsf {G}}+4\pi \mathbf {P} ^{\textsf {G}}}
{\displaystyle \mathbf {P} ^{\textsf {SI}}=\chi _{\text{e}}^{\textsf {SI}}\epsilon _{0}\mathbf {E} ^{\textsf {SI}}}{\displaystyle \mathbf {P} ^{\textsf {LH}}=\chi _{\text{e}}^{\textsf {LH}}\mathbf {E} ^{\textsf {LH}}}{\displaystyle \mathbf {P} ^{\textsf {G}}=\chi _{\text{e}}^{\textsf {G}}\mathbf {E} ^{\textsf {G}}}
{\displaystyle \mathbf {D} ^{\textsf {SI}}=\epsilon \mathbf {E} ^{\textsf {SI}}}{\displaystyle \mathbf {D} ^{\textsf {LH}}=\epsilon \mathbf {E} ^{\textsf {LH}}}{\displaystyle \mathbf {D} ^{\textsf {G}}=\epsilon \mathbf {E} ^{\textsf {G}}}
{\displaystyle \epsilon ^{\textsf {SI}}/\epsilon _{0}=1+\chi _{\text{e}}^{\textsf {SI}}}{\displaystyle \epsilon ^{\textsf {LH}}=1+\chi _{\text{e}}^{\textsf {LH}}}{\displaystyle \epsilon ^{\textsf {G}}=1+4\pi \chi _{\text{e}}^{\textsf {G}}}

where

  • the superscript (SILHG) indicates in which system the quantity is defined
  • E and D are the electric field and displacement field, respectively;
  • P is the polarization density;
  • \epsilon  is the permittivity;
  • \epsilon _{0} is the permittivity of vacuum (used in the SI system, but meaningless in the Gaussian and Lorentz–Heaviside systems);
  • \chi _{\text{e}} is the electric susceptibility

The quantities {\displaystyle \epsilon ^{\textsf {SI}}/\epsilon _{0}}{\displaystyle \epsilon ^{\textsf {LH}}} and {\displaystyle \epsilon ^{\textsf {G}}} are dimensionless, and they have the same numeric value. By contrast, the electric susceptibility \chi _{e} is dimensionless in all the systems, but has different numeric values for the same material:

{\displaystyle \chi _{\text{e}}^{\textsf {SI}}=\chi _{\text{e}}^{\textsf {LH}}=4\pi \chi _{\text{e}}^{\textsf {G}}}

Next, here are the expressions for the various fields in a magnetic medium. Again, it is assumed that the medium is homogeneous, linear, isotropic, and nondispersive, so that the permeability can be expressed as a scalar constant.

SI quantitiesLorentz–Heaviside quantitiesGaussian quantities
{\displaystyle \mathbf {B} ^{\textsf {SI}}=\mu _{0}(\mathbf {H} ^{\textsf {SI}}+\mathbf {M} ^{\textsf {SI}})}{\displaystyle \mathbf {B} ^{\textsf {LH}}=\mathbf {H} ^{\textsf {LH}}+\mathbf {M} ^{\textsf {LH}}}{\displaystyle \mathbf {B} ^{\textsf {G}}=\mathbf {H} ^{\textsf {G}}+4\pi \mathbf {M} ^{\textsf {G}}}
{\displaystyle \mathbf {M} ^{\textsf {SI}}=\chi _{\text{m}}^{\textsf {SI}}\mathbf {H} ^{\textsf {SI}}}{\displaystyle \mathbf {M} ^{\textsf {LH}}=\chi _{\text{m}}^{\textsf {LH}}\mathbf {H} ^{\textsf {LH}}}{\displaystyle \mathbf {M} ^{\textsf {G}}=\chi _{\text{m}}^{\textsf {G}}\mathbf {H} ^{\textsf {G}}}
{\displaystyle \mathbf {B} ^{\textsf {SI}}=\mu ^{\textsf {SI}}\mathbf {H} ^{\textsf {SI}}}{\displaystyle \mathbf {B} ^{\textsf {LH}}=\mu ^{\textsf {LH}}\mathbf {H} ^{\textsf {LH}}}{\displaystyle \mathbf {B} ^{\textsf {G}}=\mu ^{\textsf {G}}\mathbf {H} ^{\textsf {G}}}
{\displaystyle \mu ^{\textsf {SI}}/\mu _{0}=1+\chi _{\text{m}}^{\textsf {SI}}}{\displaystyle \mu ^{\textsf {LH}}=1+\chi _{\text{m}}^{\textsf {LH}}}{\displaystyle \mu ^{\textsf {G}}=1+4\pi \chi _{\text{m}}^{\textsf {G}}}

where

  • the superscript (LHGSI) indicates in which system the quantity is defined
  • B and H are the magnetic fields
  • M is the magnetization
  • \mu  is the magnetic permeability
  • \mu _{0}is the permeability of vacuum (used in the SI system, but meaningless in the Gaussian and Lorentz–Heaviside systems);
  • \chi _{\text{m}} is the magnetic susceptibility

The quantities {\displaystyle \mu ^{\textsf {SI}}/\mu _{0}}{\displaystyle \mu ^{\textsf {LH}}} and {\displaystyle \mu ^{\textsf {G}}} are dimensionless, and they have the same numeric value. By contrast, the magnetic susceptibility \chi _{\text{m}} is dimensionless in all the systems, but has different numeric values for the same material:

{\displaystyle \chi _{\text{m}}^{\textsf {SI}}=\chi _{\text{m}}^{\textsf {LH}}=4\pi \chi _{\text{m}}^{\textsf {G}}}

Vector and scalar potentialsEdit

The electric and magnetic fields can be written in terms of a vector potential A and a scalar potential \phi :

NameSI quantitiesLorentz–Heaviside quantitiesGaussian quantities
Electric field
(static)
{\displaystyle \mathbf {E} ^{\textsf {SI}}=-\nabla \phi ^{\textsf {SI}}}{\displaystyle \mathbf {E} ^{\textsf {LH}}=-\nabla \phi ^{\textsf {LH}}} 
Electric field
(general)
{\displaystyle \mathbf {E} ^{\textsf {SI}}=-\nabla \phi ^{\textsf {SI}}-{\frac {\partial \mathbf {A} ^{\textsf {SI}}}{\partial t}}}{\displaystyle \mathbf {E} ^{\textsf {LH}}=-\nabla \phi ^{\textsf {LH}}-{\frac {1}{c}}{\frac {\partial \mathbf {A} ^{\textsf {LH}}}{\partial t}}} 
Magnetic B field{\displaystyle \mathbf {B} ^{\textsf {SI}}=\nabla \times \mathbf {A} ^{\textsf {SI}}}{\displaystyle \mathbf {B} ^{\textsf {LH}}=\nabla \times \mathbf {A} ^{\textsf {LH}}} 

Translating expressions and formulae between systemsEdit

To convert any expression or formula between SI, Lorentz–Heaviside or Gaussian systems, the corresponding quantities shown in the table below can be directly equated and hence substituted. This will reproduce any of the specific formulas given in the list above, such as Maxwell's equations.

As an example, starting with the equation

{\displaystyle \nabla \cdot \mathbf {E} ^{\textsf {SI}}=\rho ^{\textsf {SI}}/\epsilon _{0},}

and the equations from the table

{\displaystyle {\sqrt {\epsilon _{0}}}\ \mathbf {E} ^{\textsf {SI}}=\mathbf {E} ^{\textsf {LH}}}
{\displaystyle {\frac {1}{\sqrt {\epsilon _{0}}}}\rho ^{\textsf {SI}}=\rho ^{\textsf {LH}},}

moving the factor across in the latter identities and substituting, the result is

{\displaystyle \nabla \cdot \left({\frac {1}{\sqrt {\epsilon _{0}}}}\mathbf {E} ^{\textsf {LH}}\right)=\left({\sqrt {\epsilon _{0}}}\rho ^{\textsf {LH}}\right)/\epsilon _{0},}

which then simplifies to

{\displaystyle \nabla \cdot \mathbf {E} ^{\textsf {LH}}=\rho ^{\textsf {LH}}.}
NameSI unitsLorentz–Heaviside unitsGaussian units
electric fieldelectric potential{\displaystyle {\sqrt {\epsilon _{0}}}\left(\mathbf {E} ^{\textsf {SI}},\varphi ^{\textsf {SI}}\right)}{\displaystyle \left(\mathbf {E} ^{\textsf {LH}},\varphi ^{\textsf {LH}}\right)} 
electric displacement field{\displaystyle {\frac {1}{\sqrt {\epsilon _{0}}}}\mathbf {D} ^{\textsf {SI}}}{\displaystyle \mathbf {D} ^{\textsf {LH}}} 
electric chargeelectric charge density,
electric currentelectric current density,
polarization densityelectric dipole moment
{\displaystyle {\frac {1}{\sqrt {\epsilon _{0}}}}\left(q^{\textsf {SI}},\rho ^{\textsf {SI}},I^{\textsf {SI}},\mathbf {J} ^{\textsf {SI}},\mathbf {P} ^{\textsf {SI}},\mathbf {p} ^{\textsf {SI}}\right)}{\displaystyle \left(q^{\textsf {LH}},\rho ^{\textsf {LH}},I^{\textsf {LH}},\mathbf {J} ^{\textsf {LH}},\mathbf {P} ^{\textsf {LH}},\mathbf {p} ^{\textsf {LH}}\right)} 
magnetic B field, magnetic flux,
magnetic vector potential
{\displaystyle {\frac {1}{\sqrt {\mu _{0}}}}\left(\mathbf {B} ^{\textsf {SI}},\Phi _{\text{m}}^{\textsf {SI}},\mathbf {A} ^{\textsf {SI}}\right)}{\displaystyle \left(\mathbf {B} ^{\textsf {LH}},\Phi _{\text{m}}^{\textsf {LH}},\mathbf {A} ^{\textsf {LH}}\right)} 
magnetic H field{\displaystyle {\sqrt {\mu _{0}}}\ \mathbf {H} ^{\textsf {SI}}}{\displaystyle \mathbf {H} ^{\textsf {LH}}} 
magnetic momentmagnetization{\displaystyle {\sqrt {\mu _{0}}}\left(\mathbf {m} ^{\textsf {SI}},\mathbf {M} ^{\textsf {SI}}\right)}{\displaystyle \left(\mathbf {m} ^{\textsf {LH}},\mathbf {M} ^{\textsf {LH}}\right)} 
relative permittivity,
relative permeability
{\displaystyle \left({\frac {\epsilon ^{\textsf {SI}}}{\epsilon _{0}}},{\frac {\mu ^{\textsf {SI}}}{\mu _{0}}}\right)}{\displaystyle \left(\epsilon ^{\textsf {LH}},\mu ^{\textsf {LH}}\right)} 
electric susceptibility,
magnetic susceptibility
{\displaystyle \left(\chi _{\text{e}}^{\textsf {SI}},\chi _{\text{m}}^{\textsf {SI}}\right)}{\displaystyle \left(\chi _{\text{e}}^{\textsf {LH}},\chi _{\text{m}}^{\textsf {LH}}\right)} 
conductivityconductancecapacitance{\displaystyle {\frac {1}{\epsilon _{0}}}\left(\sigma ^{\textsf {SI}},S^{\textsf {SI}},C^{\textsf {SI}}\right)}{\displaystyle \left(\sigma ^{\textsf {LH}},S^{\textsf {LH}},C^{\textsf {LH}}\right)} 
resistivityresistanceinductance{\displaystyle \epsilon _{0}\left(\rho ^{\textsf {SI}},R^{\textsf {SI}},L^{\textsf {SI}}\right)}{\displaystyle \left(\rho ^{\textsf {LH}},R^{\textsf {LH}},L^{\textsf {LH}}\right)} 

Replacing CGS with natural unitsEdit

When one takes standard SI textbook equations, and sets ε0 = µ0 = c = 1 to get natural units, the resulting equations follow the Heaviside–Lorentz formulation and sizes. The conversion requires no changes to the factor 4π, unlike for the Gaussian equations. Coulomb's inverse-square law equation in SI is F = q1q2/4πε0r2. Set ε0 = 1 to get the HLU form: F = q1q2/4πr2. The Gaussian form does not have the 4π in the denominator.

By setting c = 1 with HLU, Maxwell's equations and the Lorentz equation become the same as the SI example with ε0 = µ0 = c = 1.

\nabla \cdot \mathbf {E} =\rho \,
\nabla \cdot \mathbf {B} =0\,
\nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}\,
\nabla \times \mathbf {B} ={\frac {\partial \mathbf {E} }{\partial t}}+\mathbf {J} \,
{\displaystyle \mathbf {F} =q(\mathbf {E} +\mathbf {v} \times \mathbf {B} )\,}

Because these equations can be easily related to SI work, rationalized systems are becoming more fashionable.

In quantum mechanicsEdit

Additionally setting ε0 = µ0 = c = ħ = kB = 1 yields a natural unit system parameterized by a single scale value, which can be chosen to be a value for mass, time, energy, length, etc. Choosing one, for example a mass m, the others are determined by multiplying with these constants: the length scale via l = ħ / mc, and the time scale from t = ħ / mc2, etc.

Lorentz–Heaviside Planck unitsEdit

Setting {\displaystyle \epsilon _{0}=\mu _{0}=c=\hbar =k_{\text{B}}=4\pi G=1} yields the Lorentz–Heaviside Planck units, or rationalized Planck units. The mass scale is chosen such that the gravitational constant is {\frac {1}{4\pi }}, equal to the Coulomb constant. (By constrast, Gaussian Planck units set {\displaystyle 4\pi \epsilon _{0}={\frac {\mu _{0}}{4\pi }}=c=\hbar =k_{\text{B}}=G=1}.)

Key equations of physics in Lorentz-Heaviside Planck units (rationalized Planck units)
SI formNondimensionalized form
Mass–energy equivalence in special relativity{E=mc^{2}}\  
Energy–momentum relation{\displaystyle E^{2}=m^{2}c^{4}+p^{2}c^{2}\;} 
Ideal gas law{\displaystyle PV=nRT=Nk_{\text{B}}T} 
Thermal energy per particle per degree of freedom{E={\tfrac {1}{2}}k_{\text{B}}T}\  
Boltzmann's entropy formula{S=k_{\text{B}}\ln \Omega }\  
Planck–Einstein relation for angular frequency{E=\hbar \omega }\  
Planck's law for black body at temperature TI(\omega ,T)={\frac {\hbar \omega ^{3}}{4\pi ^{3}c^{2}}}~{\frac {1}{e^{\frac {\hbar \omega }{k_{\text{B}}T}}-1}} 
Stefan–Boltzmann constant σ defined{\displaystyle \sigma ={\frac {\pi ^{2}k_{\text{B}}^{4}}{60\hbar ^{3}c^{2}}}} 
Schrödinger's equation{\displaystyle -{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\psi (\mathbf {r} ,t)+V(\mathbf {r} ,t)\psi (\mathbf {r} ,t)=i\hbar {\frac {\partial \psi (\mathbf {r} ,t)}{\partial t}}} 
Hamiltonian form of Schrödinger's equation{\displaystyle H\left|\psi _{t}\right\rangle =i\hbar {\frac {\partial }{\partial t}}\left|\psi _{t}\right\rangle } 
Covariant form of the Dirac equation\ (i\hbar \gamma ^{\mu }\partial _{\mu }-mc)\psi =0 
Unruh temperature{\displaystyle T={\frac {\hbar a}{2\pi ck_{B}}}} 
Coulomb's lawF={\frac {1}{4\pi \epsilon _{0}}}{\frac {q_{1}q_{2}}{r^{2}}} 
Maxwell's equations\nabla \cdot \mathbf {E} ={\frac {1}{\epsilon _{0}}}\rho

\nabla \cdot \mathbf {B} =0\
\nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}
\nabla \times \mathbf {B} ={\frac {1}{c^{2}}}\left({\frac {1}{\epsilon _{0}}}\mathbf {J} +{\frac {\partial \mathbf {E} }{\partial t}}\right)

 

 
 
 

Biot–Savart law{\displaystyle \Delta B={\frac {\mu _{0}I}{4\pi }}{\frac {\Delta L}{r^{2}}}\sin \theta }{\displaystyle \Delta B={\frac {I}{4\pi }}{\frac {\Delta L}{r^{2}}}\sin \theta }
Biot–Savart law{\displaystyle \mathbf {B} (\mathbf {r} )={\frac {\mu _{0}}{4\pi }}\int _{C}{\frac {I\,d{\boldsymbol {\ell }}\times \mathbf {r'} }{|\mathbf {r'} |^{3}}}}{\displaystyle \mathbf {B} (\mathbf {r} )={\frac {1}{4\pi }}\int _{C}{\frac {I\,d{\boldsymbol {\ell }}\times \mathbf {r'} }{|\mathbf {r'} |^{3}}}}
Electric field intensity and electric induction{\displaystyle \mathbf {D} =\epsilon _{0}\mathbf {E} }{\displaystyle \mathbf {D} =\mathbf {E} }
Magnetic field intensity and magnetic induction{\displaystyle \mathbf {B} =\mu _{0}\mathbf {H} }{\displaystyle \mathbf {B} =\mathbf {H} }
Newton's law of universal gravitation{\displaystyle F=-G{\frac {m_{1}m_{2}}{r^{2}}}}{\displaystyle F=-{\frac {m_{1}m_{2}}{4\pi r^{2}}}}
Einstein field equations in general relativity{G_{\mu \nu }=8\pi {G \over c^{4}}T_{\mu \nu }}\ {\displaystyle {G_{\mu \nu }=2T_{\mu \nu }}\ }
Schwarzschild radius{\displaystyle r_{s}={\frac {2GM}{c^{2}}}}{\displaystyle r_{s}={\frac {M}{2\pi }}}
Hawking temperature of a black hole{\displaystyle T_{H}={\frac {\hbar c^{3}}{8\pi GMk_{B}}}}{\displaystyle T_{H}={\frac {1}{2M}}}
BekensteinHawking black hole entropyS_{\text{BH}}={\frac {A_{\text{BH}}k_{\text{B}}c^{3}}{4G\hbar }}={\frac {4\pi Gk_{\text{B}}m_{\text{BH}}^{2}}{\hbar c}}{\displaystyle S_{\text{BH}}=\pi A_{\text{BH}}=m_{\text{BH}}^{2}}



 ,  

.